Seyed Jamal Hashemie zadeh dezfouli

Assistant Professor

Update: 2025-03-03

Seyed Jamal Hashemie zadeh dezfouli

دانشکده علوم ریاضی و کامپیوتر / گروه ریاضی

P.H.D dissertations

  1. زیرحلقه‌های ماکسیمال حلقه‌های دوطرفه
    فاطمه حسن زاده 1403
  2. همریختی ها روی فضاهای ∩ - ساختار
    الهام عبدالله پور 1403
  3. بررسی برخی از قضایای کلاسیک جبر جابجایی برای حلقه های دوطرفه و حلقه های شبه دوطرفه.
    حسین یاری 1403
  4. اندیس ها و هم اندیس های زاگرب و زاگرب ضربی گراف ها
    ویدا احمدی 1395

    The topological indices are numerical invariants of chemical graphs. They have been introduced to study molecular graphs in chemistry and they describe correlation of chemical structure with various physical properties. These indices are usually based on the distance between vertices, the number of edges and the degree of vertices. Up to the present time, many different indices have been introduced such as Wiener, Hyper Wiener, Szeged, Padmakar-Ivan, Schultz, Zagreb, Multiplicative Zagreb indices and etc. The main application of these indices is in chemistry. In this thesis, the Zagreb indices, multiplicative Zagreb indices, Zagreb coindices and Multiplicative Zagreb coindices of some graphs such as dendrimers and nanocones are computed. Moreover, the multiplicative Zagerb indices are computed using link of graphs.
    Dendrimers have various applications in the pharmaceutical industry, water refinery, industrial wastewater treatment and etc. Nano dendrimers are used in angiography. Furthermore, dendrimers can be used for detection of tumors.
     


Master Theses

  1. بررسی قضیه كوهن در مدول ها
    نادیا پایون 1403
  2. ایدال‌های 2-پوچ در حلقه‌های تعویض‌پذیر
    اسیه میری 1403
  3. بررسی حلقه‌هایی كه هر ایدآل نیم‌اولیه آنها یك ایدآل اولیه 1-جذبی باشد
    نسیم سعدی 1403
  4. مطالعه‌ی ایدال‌ها‌ی قویاً شبه اولیه
    ندا قربانی 1401
  5. حلقه ها و مدول های یکریخت-نوتری
    رجب سواعدی 1401
  6. ایدآلهای قویاً اول و حلقه های قویاً صفر-بعدی
    معصومه حسن وند 1400
  7. حلقه های S-آرتینی و حلقه های متناهی S-هم تولید شده
    عاطفه مسعودی صدر 1400
  8. حلقه های تعویض‌پذیر به طور ضعیف پاک پوچ
    عظیمه ممبینی 1399
  9. اجتماع متناهی زیر مدول ها
    فرزانه حسینی فرد 1398
  10. ایدآلهای جذبی
    مرضیه دیلمی 1397
  11. حلقه هایی که ایده آل های چپ اصلی آنها پوچسازاصلی چپ هستند.
    مطهر قربانی بابادی 1396

    A left ideal I of a ring R called a left principal annihilator if I = l(a) ={r∈R| ra =۰} for some a∈R. A ring R called left morphic if for all a∈R there exists b∈R such that Ra=l(b), Rb=l(a). Our interest here is in the ring R satisfying : for all a∈R there exist b∈R such that Ra=l(b). these ring were called left pseudo-morphic by Yang.
    We show left pseudo-morphic rings are right p-injective. Also semiprime left pseudo-morphic rings are emismile and studied condition ACC on pseudo-morphic rings. We will show left pseudo-morphic rings, mininjective, with the ACC on {l(b)|b∈R}, are quasi-Frobenius and every right ideal is principal.
     


  12. زیرمدول های قویاٌ اول ، G- زیر مدول ها و مدول های جیکوبسن
    محسن جوریكی 1394

    A submodule N ≠ M of an R-module M is said to be prime if axϵN, aϵR, xϵM\N implies aϵ(N:RM) or equivalently , (N:RM)=P is prime and M/N is torsion-free over R/P
    A proper submodule N of an R-module M to be strongly prime if ((N+Rx):RM)y ⊆ N implies xϵN or yϵN for x , y ϵ M 
    An integral domain R with quotient field K is said to be a G-domain if K=R[u-1] for some nonzero uϵR and an ideal P of a ring R is called a G-ideal if R/P is a G-domain. We define a submodule N of a finitely generated R-module M to be a G-submodule of M if P =(N:RM) is a G-ideal of R and N is P-maximal
    Strongly prime submodules of a finitely generated R-module are characterized
    G-submodules are defined and it is shown that any prime submodule of a finitely generated R-module is an intersection of G-submodules of M. A finitely generated R-module M is defined to be a Jacobson module if each G-submodule of M is maximal .It is also shown that every finitely generated module over a Jacobson ring is Jacobson. Finally, the strongly prime submodules of a module are compared to the cocritical submodules which were defined by Nishitani


  13. Q-مدول ها
    حمیده داودی 1393

    Th roughout this R denotes a commutative ring with identity and all

    modules are unital R-modules We characterize Q-modules and almost

    Q-modules. Next we establish some Equivalent conditions for an

    almost Q-module to be a Q-module. Using these results some

    characterizations are given for Noetherian Q-modules.

     

     


  14. مدول هایی با حلقه های درون ریختی آبلی
    آرزو وحدت پناه 1393

     The results of Szele and Szenderi [‘On Abelian groups with commutative en-
    domorphism rings’, Acta Math. Acad. Sci. Hungar. 2 (1951), 309-324] charac-
    terizing abelian groups with commutative endomorphism rings are generalized
    to modules whose endomorphism rings have variouse restrictions on their idem-
    potents. Such properties include central or commuting idempotents, and one-
    sided ideals being two-sided. Related properties include direct summands having
    unique complements, or being fully invariant.


  15. نظریه AGCD- دامنه ها
    منجزی ویسی-محمد 1393
  16. مدول های ضربی که حلقه های درونریختی آنها حوزه صحیح باشد
    محمدجواد جنبی بحرین 1392

    In this paper, firstly survey multiplication module in chapter tow and then several properties of endomorphism rings of modules are investigated. A multiplication module M over a commutative ring R induces a commutative ring M^*of endomorphisms of M and hencethe relation between the prime (maximal) submodules of M and the prime (maximal) ideals of M^*can be found. In particular, two classes of ideals of M^*are discussed in this paper


  17. :مدول های قویاً گسسته
    لاله آذر آئین 1392

    we call supplemented self projective modules strongly discrete modules. we characterize discrete and strongly modules in terms of lifting of maps and prove some of their properties.we show that epi projective lifting modules are preciesly the strongly discrete modules and dually mono injective extending modules are preciesly the self injective modules.we also prove that vN-injective modules are preciesly the self injective modules


  18. ایدآلهای قویاًتحویل ناپذیردر حلقه های تعویض پذیر
    مسلم كرم پور 1392
  19. poor-مدول ها و حلقه های بدون کلاس میانی راست.( براساس مقاله
    طیبه ارشدی 1391
  20. بررسی ویژگیهای منظم بودن نسبت به ایدال ها
    ایلین شمسایی 1390
  21. مدولها با شرطهای زنجیری روی زیر مدولهای غیراساسی
    معصومه خسروی زاده 1389