صفحه اعضا هیئت علمی - دانشکده علوم ریاضی و کامپیوتر

Associate Professor
Update: 2025-03-03
HABIBE SADEGHI
دانشکده علوم ریاضی و کامپیوتر / گروه ریاضی
P.H.D dissertations
-
حل مسائل برنامه ریزی چندسطحی با استفاده از مسائل بهینه سازی چندهدفه
فاطمه مسلمی 1398 -
بررسی روش های قطعی برای حل مسایل برنامه ریزی چندسطحی خطی و شبه مقعر
اسماعیلی-مریم 1397 -
ارتباط بین مسائل چند هدفه غیرهموار و نامساوی های تغییراتی برداری
توان-یوسف 1394In this thesis a multiobjective problem with a feasible set defined by inequality, equality and set constraints is considered, where the objective and constraint functions are locally Lipschitz. Several constraint qualifications are given and the relations between them are analyzed. We establish Kuhn-Tucker and strong Kuhn-Tucker necessary optimality conditions for (weak) quasi efficiency in terms of the Clarke subdifferential. In single-valued optimization problems, the Karush-Kuhn Tucker necessary optimality conditions are stated such that the multiplier corresponds to the objective function is positive. For the multiobjective optimization problem these conditions, which is known as the Kuhn-Tucker conditions, imply the corresponding vector to the objective function is nonzero, so it is possible that some components of the objective function lose their importance. To prevent this case we use the strong Kuhn-Tucker conditions which imply that all components of the vector assigned to the objective function are positive. Also, we formulate a generalized Stampacchia vector variational inequality problem as a tool to characterize quasi or weak quasi efficient points. By means of two new constraint qualifications, we established that solutions of generalized Stampacchia vector variational inequality problem are necessary optimality condition for local quasi and weak quasi efficiency.
Moreover, examples are given to show that under these constraint qualifications, it is not necessary that the feasible set be convex or open. By using two new classes of generalized convexity functions, we prove, under suitable constraint qualifications, the equivalence between Kuhn-Tucker vector critical points, solutions to multiobjective problems and solutions to generalized Stampacchia vector variational inequality problems in both weak and strong forms.
Master Theses
-
الگوریتمی برای مسائل برنامه ریزی چندسطحی خطی/ كسری خطی عمومی
صدیقه سرفیع نوتركی 1403 -
یك تابع هدف جریمه ایی برای برنامه ریزی دوسطحی
صباح امرائی 1403 -
حل مسائل برنامهریزی خطی و غیرخطی چندسطحی با رویكرد برنامهریزی فازی
فاطمه شایسته راد 1403 -
چارچوب الگوریتم سراسری جست و جوی رأس دوسطحی برای مسئله های برنامه ریزی کسری خطی
الهام فرحانی مقدم 1402 -
حل مسائل برنامهریزی کسری خطی با استفاده از روشهای نقطه درونی و نامساویهای تغییراتی
احمد یوسفی 1402 -
مساله کمینه سازی هزینه حمل و نقل با قیود ترکیبی : یک رویکرد الگوریتمی موثر
علی خالد محمد 1401 -
یک روش جدید نقطه درونی اولیه- دوگان برای بهینه سازی نیمه معین بر اساس تابع هسته پارامتری شده
صائب بهمنی زاده 1401 -
حل مسایل برنامه ریزی چند هدفه چند سطحی با رویکرد برنامه ریزی هدف فازی.
منیژه چحیلی 1399 -
حل مسائل برنامه ریزی خطی چندهدفه درمحیط فازی شهودی بازه ای مقدار
شكوفه بازدار 1399 -
روش شاخه و کران برای حل مسایل برنامه ریزی چند پارامتری صحیح آمیخته خطی
مهناز حسنوند 1396In this thesis, we present a novel algorithm for the solution of multiparametric mixed integer linear programming ( MP-MILP ) problems that exhibit uncertain objective function coefficients and uncertain entries in the right-hand side constraint vector. The algorithmic procedure employs a branch and bound strategy that involves the solution of a multiparametric linear programming sub-problem at leaf nodes and appropriate comparison procedures to update the tree. McCormick relaxation procedures are employed to overcome the presence of bilinear terms in the model. The algorithm generates an envelope of parametric profiles, containing the optimal solution of the MP-MILP problem. The parameter space is partitioned into polyhedral convex critical regions. Two examples are presented to illustrate the steps of the proposed algorithm.
-
یک لم فارکاس دوسطحی جهت تشخیص رده ای از جواب های سراسری برنامه های دوسطحی چند جمله ای
احترام آغاجاریان 1395We present a form of Farkers lemma for bilevel inequality systems and use it to obtain an important characterization of global solutions of a class of bilevel polynomial programs with lower- level linear programs. It should be noted the objective functions of the upper- level polynomial programs are coercive polynomial. Polynomial function f is called coercive polynomial whenever
iminf ∥x∥ f(x) = +∞ .
Consequently, we show that a sequence of optimal solutions of related semidefinite linear programs converges to the global optimal solution of a bilevel polynomial program under suitable conditions. Also we obtain the global optimal value of the bilevel polynomial program by using YALMIP toolbox.
-
مسائل دوسطحی روی چندوجهی ها با جوابهای بهین در نقطه ی رأسی
شهریاری_فرانك شهریاری 1394Bilevel programming involves two optimization problems where the constraint region of the upper level problem is determined by another optimization problem. In this paper ,at first, we briefly consider quasiconcave bilevel programming problem without upper level constraint and the special case of them , namely fractional linear bilevel programming problem. Then we consider quasiconcave bilevel problems over polyhedra with coupling constraints. On the other hand,under the uniqueness of the optimal solution of the lower level problem , we prove that the fact that the objective functions of both levels are quasiconcave characterizes the property of the existence of extreme point of the polyhedron defined by the whole set of constraints which is an optimal solution of the bilevel problem and An example is used to show that this property is in general violated if the optimal solution of the lower level problem is not unique, On the other hand, if the lower level objective function is convex quadratic, assumig the optimistic approach we prove that the optimal solution is attained at an extreme point of an enlarged polyhedron. Also we consider the effect of shifting constraints from one level to the other on the optimal solution of BLP.
-
یک الگوریتم نقطه ی درونی برای بهینه سازی خطی براساس یک تابع کرنل جدید
ناهید دانشجو 1394Primal-dual interior-point methods are the most efficient methods for a computational point of view. In this thesis we intoduce a new kind of kernel function, which yields efficient large-update primal-dual interior point methods. Then we conclude that in some situations its iteration bounds order are O(m^((3m+1)/2m) n^((m+1)/2m) log(n/ϵ) ), which are at least as good as the best known bounds order so far,
O(√n log(n log(n/ϵ)) for large-update primal-dual interior-point methods. The result decreases the gap between the practical behavior of the large-update algorithms and their theoretical performance results, which is an open problem. Numerical results show that the efficiency of proposed algorithm
-
یک الگوریتم سیمپلکس برای مسائل برنامه ریزی کسری قطعه به قطعه خطی
هاشمی-معصومه 1393Abstract : We can develope the simplex method for solving piecewise linear programming problem (PLP) and linear fractional programming problem(LFP) . In this thesis we consider a further generalization of the simplex method to solve piecewise - linear fractional programming prolems (PLFP). Linear programming problem( LP) , PLP and LFP are all special cases of PLFP . The simplex algorithm introduced in this thesis for solving PLFP provideds a unified framework for solving several important optimization problems .
-
الگوریتم جدید شاخه وبرش برای برنامه ریزی خطی دوسطحی
حبیب پور-منا 1393Bilevel linear programming (BLP) problem is an optimization problem in which a subset of the decision variables are constrained to lie in the optimal set of a second level optimization problem and it has the continuous variables and linear objective functions.
Each the BLP problem consists of two problems. The upper level problem that it called as leader and the lower level problem is called follower.
A linear programming problem has at least a binary variable which is known as linear mixed integer programming problem (MIP 0-1). In this thesis , BLP problem is reformulated as MIP , then we introduce integerality cuts for it. By using these cuts , we present the new branch and cut (CCB) algorithm for solving BLP problem. The algorithm is composed of two phases. The first one is a cutting-plane phase whose goal is to improve the value of the upper bound on the objective function value. It is an iterative step where at each iteration a valid cut is generated and added to the linear relaxation problem. After a maximal number of iterations , the second phase -a branch and bound phase - is triggered in order to ensure finite and exact convergence of the algorithm. We illustrated this algorithm completely. Also by showing the numerical results which tested on a series of randomly generated problems , CCB algorithm compromised to pure branch and bound algorithm in terms of computing times , number of nodes explored in branch and bound tree.
-
روش ماکزیمم سازی پراکندگی برای بهینه سازی چندهدفه
حلا نژادفاضل 1392One of the most common approaches for multiobjective optimization is to generate the whole or partial efficient frontierand then decide about the preferred solution in a higher-level decision-making process. In this paper, a new methodfor generating the efficient frontier for multiobjective problems is developed, called the diversity maximization approach(DMA). This approach is capable of solving mixed-integer and combinatorial problems. The DMA finds Pareto optimalsolutions by maximizing a proposed diversity measure and guarantees generating the complete set of efficient points. Givena subset of the efficient frontier, DMA finds the next Pareto optimal solution which, combined with the existing ones,yields the most diversified subset of efficient points.
An additional way of using DMA is by incorporating it in a problem oriented branch-and-bound algorithm.
Detailed examples of both approaches are given.
-
محاسبه مرز کارا یک مسأله برنامه ریزی دوسطحی دو هدفه خطی
عباس مهربانی 1392 -
برنامه ریزی فازی دو سطحی چند هدفه با چندین پیرو مشترک
سمیه حاتمی دزدارانی 1391 -
روش اسکالرسازی مخروطی در بهینه سازی چند هدفه
فرزانه انیس حسینی 1391 -
رویکرد چند معیاره در بهینهسازی دوسطحی
ابوذر كرمی 1390 -
مسائل بهینه سازی دوسطحی با برنامه ریزی چند هدفی در سطح دوم
اسما عبیات 1390 -
روش تجزیه برای مسائل خطی دو سطحی صحیح آمیخته بر مبنای تکنیک تجزیه
لیلا كریمی احمداباد 1390 -
بهینه سازی توابع کسری چندجمله ی
رحیم عساكره 1390 -
یک روش تابع جریمه براساس برنامه ریزی دوسطحی برای حل مسائل مقداربهین معکوس
زهرا لوافیان 1389 -
مدل،مفهوم جواب و ارائه یک الگوریتم kth-best برای برنامه ریزی سه سطحی خطی
مریم اسماعیلی 1389 -
بهینه سازی مسائل دوسطحی با تابع هدف حاصلضربی به کمک روش جریمه و الگوریتمی براساس صفحههای برشی
اكرم وفادار 1389 -
شرایط بهینگی در بهینه سازی مطلق و کاربردهای آن
فریبرز اشرف پوری 1388 -
حل مسائل مینیمم ماکسمال جریان با استفاده از بهینهسازی روی مجموعه کارا
علیرضا خرمی عابد آبادی 1387 -
بهینهسازی توابع صعودی ستارهای شکل برپایه تحدب مجرد
فریبا پیدنی 1385