صفحه اعضا هیئت علمی - دانشکده علوم ریاضی و کامپیوتر
Associate Professor
Update: 2025-03-03
Hadi BASIRZADEH
دانشکده علوم ریاضی و کامپیوتر / گروه ریاضی
P.H.D dissertations
-
برخی از روش های پایداری در سیستم های كنترل بهینه
علی فرحان حاشوش 1402 -
کاربرد کنترل بهینه در مدل های ریاضی درمان پزشکی
ملیحه نجفی 1397 -
کارایی تقریبی در بهینه سازی برداری با ساختار ترتیب متغیر
صیادی باندر-عباس 1395In the classical vector optimization, a cone is used for defining a relation on the objective space and defining efficient solutions. But variable ordering structures enable the decision maker to assign different criterion cones to a vector optimization problem. This assignment can be determined using a cone valued map which assigns a cone related to each element in the objective space. Thus, in such a situation, we can define different concepts of solutions for vector optimization problem.
For solving optimization problems, numerical algorithms are used but these algorithms just obtain an approximation of the solution set. Therefore, studying approximate solutions of vector optimization problems, especially in variable ordering structures, can be of great interest. In this thesis, using a set valued map which assigns a pointed closed convex set namely coradiant set, approximate solutions in vector optimization problem are studied. Especial structure of coradiant set enables us to define new concepts of solutions for vector optimization problems. In this thesis, the concepts of approximate minimal solution and approximate nondominated solution are introduced. In order to characterizing these solutions a linear scalarization for convex problem and two nonlinear scalarizations for nonconvex problem are proposed.
-
استفاده از روشهای غیرپارامتری برای حل مسائل بهینهسازی چندهدفه
مروتی-وحید 1395This thesis contains two parts: in the first part nonparametric methods for unconstrained multiobjective optimization problems are investigated. In this regard, the steepest descent method, Barzilai and Borwein, Newton and Quasi-Newton methods for multiobjective optimization problems are explained. As being well-known, the steepest descent, Newton and Quasi-Newton methods use the Armijo rule for obtaining a suitable step length. But this method needs some function evaluations in each iteration and this leads to extensive computations. Moreover, employing Armijo's rule as a line search strategy leads to a very small step length in multiobjective optimization problems.
In order to overcome the afore mentioned difficulties, a new version of Barzilai and Borwein's method for multiobjective optimization problems is introduced. In this method, a suitable step length is computed without any function evaluations. Because of this property, the proposed method has a more favorable speed of convergence in contrast to other methods. As illustrated by the numerical results, the proposed Barzilai and Borwein's method preserves the quality of nondominated frontier. In addition, in some test problems the quality of nondominated frontiers obtained by Barzilai and Borwein's method are higher than these of the other methods. In the Barzilai and Borwein's method in each iteration only the Jacobian matrix is needed and no function evaluation is required. But, in the steepest descent method, beside computing the Jacobian matrix, some function evaluations are needed in each iteration. In the Newton and Quasi-Newton methods, computation of Jacobian matrix, some function evaluation and Hessian or its approximations (for Quasi-Newton's method) of all the objective functions are needed in each iteration.
The first part of this thesis also contains a comprehensive study of different Quasi-Newton methods for multiobjective optimization problems. These methods are investigated in the presence of line search and without it. Moreover, the convergence of the Quasi-Newton method in the absence of line search is proved.
In the second part of this thesis, an extension of Zoutendijk's method for constrained multiobjective optimization problems is introduced and its convergence is established. Applying this method to several well-known test problems shows that it needs considerably less computations and achieves a high quality of nondominated frontiers.
Master Theses
-
جدول زمانی هماهنگ برای شبكه های حمل و نقل سریع اتوبوس در شهرهای كوچك و بزرگ
كوثر محمدیان 1403 -
روشی برای انتخاب متغیر ورودی و خروجی در الگوریتم سیمپلكس
ختام سعدون رحیمه 1402 -
کاربرد روش سیمپلکس شبکه برای مسائل حداقل هزینه جریان
زهرا مزرعی 1402 -
الگوریتم بی نظم وکاربردهای آن درمسائل شبکه جریان
مریم غوابش 1402 -
یك فرم برنامه ریزی خطی معادل فرم كلی برنامه ریزی كسری خطی: رویكرد دوگانگی
ساناز اب دیده 1402 -
چند الگوریتم برای مسئله فروشنده دوره گرد
عاتكه هانی حمد 1401 -
بررسی مسئله ماکزیمم جریان در شبکه غیر قطعی
نشات عبدالسلام حمید 1401 -
بررسی چند مدل ریاضی چند جمعیتی برای شیوع کوید 19
شكوفه فرهادی 1401 -
شیوه ای برای حل شبکه جریان چندکالایی با کمترین هزینه
فاطمه صمیمی فر 1400 -
حل مسئله حمل و نقل با روشهای مختلف و مقایسه آنها
محمد فریح علی 1400 -
یک آلگوریتم سیمپلکس اولیه –دوگان برای مسئله شبکه جریان دو هدفه
عبد علی نجم مخلد 1400 -
رویکرد برنامه ریزی آرمانی برای مسائل برنامه ریزی کسری درجه دوم دو سطحی
زهرا مرادی اول 1400 -
برنامه ریزی خطی چند هدفه فازی برای بهینه سازی الگوی کشت
بهاره نادری 1399 -
روشی برای حل مسائل حمل و نقل چند هدفه
علی امیری 1399 -
بررسی در مورد چند مساله واگذاری چند هدفه
خاطره شایگان فر 1399 -
یک روش جدید برای حل مسائل شبکه های حمل و نقل چند کالایی، چند وجهی و کراندار
میلاد حبیبی نیا 1398 -
روش برنامه ریزی درجه دوم اصلاح شده برای حل مسائل برنامه ریزی غیرخطی
سیدابوالفضل محمدی یوسف نژاد 1396In this thesis, a class of general nonlinear programming problems with inequality and equality constraints is discussed. Firstly, the original problem is transformed into an associated simpler equivalent problem with only inequality constraints. Then, inspired by the ideals of the sequential quadratic programming (SQP) method and the method of system of linear equations (SLE), a new type of SQP algorithm for solving the original problem is proposed. At each iteration, the search direction is generated by the combination of two directions, which are obtained by solving an always feasible quadratic programming (QP) subproblem and a SLE, respectively. Moreover, in order to overcome the Maratos effect, the higher-order correction direction is obtained by solving another SLE. The two SLEs have the same coefficient matrices, and we only need to solve the one of them after a finite number of iterations. By a new line search technique, the proposed algorithm possesses global and superlinear convergence under some suitable assumptions without the strict complementarity. Finally, some comparative numerical results are reported to show that the proposed algorithm is effective and promising
-
مسئله برنامه ریزی هندسی چند هدفه با روش ε قید
احمد چلداوی 1396In multi-objective geometric programming problem there are more than one objective
functions. There is no single optimal solution which simultaneously optimizes all the
objective functions. Under these conditions the decision makers always search for the most
‘‘preferred’’ solution, in contrast to the optimal solution. A few mathematical programming
methods namely fuzzy programming, goal programming and weighting methods have
been applied in the recent past to find the compromise solution. In this thesis $\varepsilon$-constraint
method has been applied to find the non-inferior solution. A brief solution procedure of $\varepsilon$-
constraint method has been presented to find the non-inferior solution of the multi-objective
programming problems. Further, the multi-objective programming problems is solved
by the fuzzy programming technique to find the optimal compromise solution. Finally, two
numerical examples are solved by both the methods and compared with their obtained
solutions.
-
شرایط لازم وکافی برای جواب های بهینه قوی در برنامه ریزی خطی بازه ای
مهدی عابدی 1395In this thesis, the linear programming problems is being considered with interval coefficients. We have presented the weak and strong optimality solutions for a linear interval programming. We have investigated the necessary and sufficient condition for a strong optimality condition. Further more we introduce the conditions for obtaining the strong optimality condition for a linear programming problem with interval coefficients .we Finally obtain the necessary and sufficient conditions under which an interval linear programming problem can have the strong form of the interval(A^I و b^I ) and (A^I و b^I و c^I ). We discuss the methods of how to solve such problems. Few numerical examples are given in the end
to illustrate the methodology of the solution.
-
روشی برای حل مسائل برنامه ریزی دوسطحی درجه دوم
ابوالقاسم تقوی عروه 1395The aim of this thesis is to present an algorithms of fuzzy goal programming (FGP) for solving quadratic bi-level programming (QBLPP) problems whit single objective at the upper level and lower level. A fuzzy goal programming (FGP) algorithm for quadratic bi-level programming (QBLPP) problems is proposed. This algorithm is extended to solve quadratic bi-level programming (QTLPP) problems. In the model formulation of the problem, we construct the quadratic membership function by determining individual best solution of the quadratic objective function subject to the system constraints. The quadratic membership functions are then transformed into equivalent linear membership function by first order Taylor series approximation at the individual best solution point.A posible relaxation of each level decisions are considered by providing preference bounds on the decision variables for avoiding decision deadlock. Then FGP approach is used to achieve highest degree of each of the membership goals by minimizing their deviational variables and there by obtaining the most satisfactory solution for all decision maker. Few numerical examples are provided in order to demonstrate the efficiency of the proposed approach.
-
استفاده از مدل های بهینه سازی برای تعیین رژیم غذایی
زهرا شیرالی نژاد 1394The assignment problem is a specific type of transportation problem in which m tasks should be assigned to m machines. If task i is assigned to machine j, the cost would be equal to Cij. We want to do this assignment in a way that finally has the least price.
In this thesis, the assignment model would be expended in order to offer a dietary plan which suits the determined targets. At first, some mathematical models for dietary plan is investigated and then foods which are served at Chamran University Restaurant is measured in terms of their prices, carbohydrate, fat, calorie and protein and based on assignment model, to offer a weekly dietary plan for the students who are in a good health condition with the aim of minimizing the price or the amount of fat or price or maximizing the amount calories and protein so that the minimum nutritional requirement of students is met.
-
بهینه سازی چند هدفه با اعداد صحیح و کاربرد های آن
نبهانی-مریم 1394. Integer programming is one of the NP hard problem that so far; various methods have been proposed for it
.Multiple objective optimization problems are very important as modeling too
In this thesis we introduce an algorithm for computation all of the Nondominated extreme points in the out com set of multiple objective integer problem.
.The main procedur algorithms is decompose the weight space and find Nondominated extrem point simultaneous
.Adjacency for Nondominated extrem points is based on existence the common faces between their weight sets
.We will apply this algorithm on the assignment problem
-
رتبه بندی اعداد فازی و مجموعه های فازی با مقادیر بازه ای و کاربرد آنها در نظریه ی بهینه سازی
ماهری-معصومه 1393The theory of the fuzzy numbers play an important role in all the different branch of the science. Recently, scientists have developed new means, of the fuzzy numbers, with new concept of the interval-valued fuzzy numbers, which can be applied in diffirent environmental decissions. But we can use them in our decissions if we be able to stecisy and clear the place and importance of the logic to the DMS.Therefore the ranking of interval-valued fuzzy numbers becomes very important in each and every fuzzy environmental decissions. Ye and Chen presented the accuracy function for intuitionistic fuzzy sets, they also ranked them. Chiang and Shieh used the signed distance for crisping and ranking whit interval-valued fuzzy numbers and fuzzy sets. On considering suggestions, we have shown that we can rank them in better way by our approach. So we can present a better advantage of them in our daily life.
-
مدلهای ریاضی مربوط به بهینه سازی سبد سهام
سارا غلامی 1393In this thesis, we discuss about the use of multi objective problems in the financial markets. In finance there has always been the problem of how to combine investments to form a portfolio. Progress on this problem, called portfolio selection, did not reach a historical juncture until the 1950s. Markowitz developed his mean-vaiance model, introduced an algorithm for solving for “efficient frontier”, and advised on the selection of one`s optimal portfolio from the efficient frontier. Efficient portfolio is one that has minimum variance (risk) with defined return or maximum return with defined variance (risk).
In this thesis, at first we proceed Markowitz mean-variance model and for more practical use of this approach, the ideas of using higher moments in portfolio optimization problem have been discussed recent years. This idea was introduced by konno and et al for the first time in 1990. The third moment (skewness) plays an important role if the distribution of the rate of return of assets is asymmetric around the mean. In particular, an investor would prefer a portfolio with larger third moment if the mean and variance are the same. At last we introduce multiple objectives models in portfolio selection that its difference is there are some investors have other considerations such as to maximize liquidity or to minimize the amount of short selling and so forth that these result to multiobjective stochastic programming problem that for solving must be transformed to equivalent deterministic problem. Here we solve the optimal portfolio selection problem with these ideas. We use Matlab and NIMBUS softwares for numerical examples. The data are from Tehran Stock Exchange.
-
روش گسسته پویای محدب برای برنامه ریزی غیرخطی صحیح
سمیه رهبری انزابی 1393Non linear programming is one of the branches in the
optimization problems. Particularly when the variables are
integers, classical methods cannot obtain the solution of the
problem. Due to importance of such problems.
In this thesis we discuse the integer non linear programming with
boundary variables; and introduce an approximate method namely
dynamic convexized method.The advantage of this method is
reduce the time to set exact soulation for the problems.
-
مسیر بحرانی پروژه با داده های فازی
راضیه ایمانی 1392 -
شیوه ای برای حل مسائل حمل و نقل چند هدفه ی خطی با پارامترهای فازی
منوچهر شهبازی 1392 -
شیوه های کراندار سریع برای نمونه های بزرگ مساله ی مکان یابی طرح ساده
كریم نواصر 1392 -
یک روش تقریبی برای مسائل برنامه ریزی چند هدفه ی محدب
مهرانگیز رضایی 1391 -
شرایط بهینگی کاروش کان تاکر در مسایل کنترل بهینه
شیما سلیمانی منش 1391 -
توابع اسکالر سازدستیابی برای مسائل برنامه ریزی چند هدفه
مرضیه محمدعلی نژاد 1390 -
مساله واگذاری چند هدفه
مینا عبدلی پاپی 1390 -
مسئله حمل ونقل چند هدفه فازی
فرنوش محرابی 1390 -
مدل های ریاضی رشد تومور و نحوه کنترل بهینه آن
ساناز نظری 1389 -
استفاده از روشهای چندهدفه ی بر هم کنشی برای حل مسائل DEA
فاطمه خدیری 1389 -
مدل تحلیل پوششی داده ها(DEA)باورودی وخروجی صحیح
مریم رادمنش 1389 -
مساله حمل و نقل ظرفیتدار
جلیل معلومات 1387 -
حل دستهای از مسائل کنترل بهینه به روش گرادیان مزدوج تعمیمیافته
ناهید احمدی 1384