صفحه اعضا هیئت علمی - دانشکده علوم ریاضی و کامپیوتر
Professor
Update: 2025-03-03
Abdolahraman Rasekh
دانشکده علوم ریاضی و کامپیوتر / گروه آمار
P.H.D dissertations
-
روشهای تشخیصی در مدلهای خطی آمیخته ریج با خطا در اندازه گیری
نجمیه مكسائی 1401 -
برآورد ریج با استفاده از روش ماکسیمم آنتروپی تعمیم یافته در مدلهای خطی آمیخته با خطا در اندازه گیری
فریبا جان امیری 1400 -
برآورد به روش لیو و مباحث تشخیصی تحت محدودیت خطی تصادفی در مدلهای رگرسیونی با ساختار کوواریانس کلی
محمدی-هدی 1398 -
برآورد پارامترها در مدلهای خطی آمیخته ریج با خطا در اندازه گیری تحت محدودیتهای تصادفی خطی
بهاره یاوری زاده 1398 -
تحلیل مدلهای فضایی ناگاوسی با خطای اندازهگیری در پیشگوها
وحید تدین 1397 -
برآورد پارامترها و مباحث تشخیصی در رگرسیون ریج با خطای AR(1)تحت محدودیتهای خطی تصادفی
ظاهر زاده -علی 1396Existence of outliers and Influential observations are one of the challenges in the regression analysis. On the other hand, one of the departures from the initial assumptions in regression analysis is collinearity among predictors which can make parameters estimates to have large variances and consequently the regression analysis can be encountered with some unexpected results. A number of remedies, including ridge regression and prior information in the form of linear stochastic restrictions, have been suggested to overcome this problem. Another problem that occurs in many datasets, especially economic datasets, is the existence of time dependence between the error terms for the assumed regression model. This dependency is possible in various forms, but one of the most common ones is the dependence of the form AR(1).
So in this dissertation, we consider regression models which not only have collinearity problem, but also have autocorrelated error terms followed by an autoregressive AR(1) process. The ridge estimates are studied for the model without and with considering stochastic linear restriction. Then, focusing on diagnostic methods for detecting outliers and influential data, the mean-shift outlier model is extended to the ridge regression model in the presence of stochastic linear restrictions in order to detecting outliers when the error terms are in the form of AR(1). Furthermore, extensions of measures for diagnosing influential observations are derived for such models. A numerical example of a real data set is used to illustrate the findings. Finally, a simulation study is conducted to evaluate the performance of the proposed procedure and measures.
-
تاثیر موضعی در مدل رگرسیونی به ظاهر نامرتبط با برآورد ریج تحت خطای اتورگرسیو
ناجی - زهرا 1395Seemingly Unrelated Regression (SUR) is a method for the analysis of the
systems with several regression equations. This model analyze individual regression eqations via combining the information in all different equations which leads
to gain efficiency in the estimation of the parameters. In recent years, SUR has
been widely used in many scientific fields such as health sciences, econometrics,
environmental sciences, etc.
In practice, there are cases that some of the observations have more impact
on the analysis compare to others. Such observations are called influential data.
Detecting influential data is one of the most crucial steps in the data analysis. On
the other hand, having temporal dependency and collinearity between regressors are
two components that can affect the behavior of the influential data points. Therefore, in this dissertation, we study the effects of influential data on the estimation
of parameters of the SUR model under different scenarios. First, we combine the
SUR with autoregressive error and use ridge regression to study the effects of the
temporal dependency and solve the collinearity between covariates. Then, we introduce different perturbation schems in data and assumptions of the model on the
estimation of SUR model with the collinearity between covariates, SUR model with
autoregressive errors, and SUR with collinearity between covariates and autoregressive errors. In addition, we use our proposed method to analyze the influence of the
observations for two sets of data: the Munnell productivity data in United States
of America at the state level and discharge of the some of the Mazandaran’s rivers
at different stations. Finally, we conduct a simulation study to investigate the effects of different influential factors that cause an outlier or leverage point become
influential point and effect on the parameters estimation.
-
برآورد پارامترها و مباحث تشخیصی در مدل های رگرسیونی ریج با خطا در اندازه گیری تحت محدودیت های تصادفی خطی
فاطمه قپانی 1394At first, we concerned with the parameter estimation in linear measurement error model with stochastic linear restrictions using the corrected score method. To overcome the collinearity problem, a ridge estimator is proposed and its efficiency is discussed. The property and the performance of the stochastic restriction ridge estimator over stochastic restriction estimator in respect to the variance and the mean squared error matrix is examined. We introduce the case deletion and the mean shift outlier models in linear measurement error model with stochastic linear restrictions and we derive the estimation of parameters in these models with use of corrected score method. We obtain a corrected score test statistic for outlier detection based on mean shift outlier models in these models. The analogues of Cook's distance and likelihood distance are proposed to determine influential observations based on case deletion models. A parametric bootstrap procedure is used to obtain empirical distributions of the test statistics and a simulation study has been used to evaluate the performance of the score test statistics. Next, the case deletion and the mean shift outlier models and estimation of parameters in linear ridge measurement error model with stochastic linear restrictions proposed and with use of a parametric bootstrap procedure the empirical distribution of the test statistics are obtained. In addition, a simulation study and an example of real data set have been used to show the performance of proposed tests.
-
برآورد پارامترها و بررسی تأثیر موضعی در مدل خطی آمیخته با خطا در اندازه گیری چوله-نرمال
امنه خردمندی 1394Abstract:
In this thesis, at first, we define the skew normal distribution and review some characteristics of this distribution. Then, we introduce the skew normal linear mixed measurement error models and propose an EM-type algorithm for estimating the parameters. With the aid of multivariate skew normal distribution, we define the multiple skew normal linear mixed measurement error models, as an extention of the skew normal linear mixed measurement error models. We implement an EM-type algorithm to parameters estimation. In adition, results of the simulated illustrate the performance of the proposed approaches. In order to examine the influence of the observations on the different outputs of the models, we derive the local influence analysis based on EM-type algorithem and four specific perturbation schemes anr discussed. Finally, a simulation study is analyzed in order to illustrate the performance of the proposed methodologies.
-
آشکارسازی نقاط پرت با استفاده از مدل انتقال واریانس در مدلهای خطی با خطا در اندازه گیری
بابك بابادی 1393At first, we define the linear measurement error models and consider the estimation of parameters, using corrected score method. Then, we introduce the case deletion and mean shift outlier models and estimation of parameters. A parametric boot strap procedure is extended for detect group of outliers. A variance shift model for linear measurement error model is considered and the estimation of parameters is presented. The corrected likelihood ratio and the score test statistics are proposed and with use of a parametric bootstrap procedure the empirical distribution of the test statistics are obtained. In addition, a simulation study and an example of real data set have been used to show the performance of proposed tests. Next, the linear mixed measurement error models and the estimation of parameters are defined. A variance shift model for these models is considered and the estimate of parameters are derived with use of corrected score method. The score test and the analogue of likelihood ratio test are derived and a parametric boot strap procedure is implemented to obtain empirical distribution of the test statistics. Finally a simulation study and an example of real data are presented to illustrate the performance and robustness of proposed tests
-
ارزیابی وجود نقاط موثر بر برآورد و آزمون فرض ترکیبات خطی پارامترهای مدل های رگرسیون کمترین توان های دوم تعمیم یافته خطی
هادی امامی 1391 -
روشهای تشخیصی برای مدلهای خطی آمیخته با خطا در اندازهگیری
كریم زارع 1390
Master Theses
-
معرفی یك برآوردگر ریج تعدیلیافته در مدلهای رگرسیون خطی _ بررسی مقایسهای
الهه ودیعی 1402 -
رویكرد یادگیری ماشین برای فواصل تولد رگرسیون خطی پیشبینیكننده، بابل- عراق (مطالعه موردی)
حیدر عبدالحی ناصر 1401 -
مطالعهی برآورد رگرسیونی ریج دو پارامتری در مدلهای خطی آمیخته
سنا تابع جابری 1401 -
مطالعهی برآورد لیو جک نایف در مدلهای خطی آمیخته
اعظم مزارعی 1400 -
مطالعه برآوردگر جکنایف لیو در مدلهای رگرسیونی خطی تحت محدودیت تصادفی خطی
مهتاب طلادزفولی 1398 -
مطالعه انقباض رگرسیونی با استفاده از لاسو ترکیب شده
حمیدرضا حبیبی 1396In regression models, the existence of multicollinearity problem and its effect on the results of regression analysis has led to the use of other estimators instead of the ordinary least squares estimation. One of these estimators is Lasso estimator, which has some of the features of least squares estimate. In addition to the shrinkage of estimates, Lasso's method eliminates coefficients whose corresponding variables have a small effect on the response variable. Also, if the number of explanatory variables is high and exceeds the number of observations, we use Fused Lasso, which increases the efficiency of the resulting estimator. This estimator tends to be aligned when the explanatory variables are highly correlated with a better performance than that of Lasso estimate, and so-called have group effects. we first study a number of methods, including Lasso and Ridge, which are used to solve the multicollinearity problem in estimating the coefficients, and then we focus on the estimator of Lasso and some generalizations such as the Fused Lasso, and then estimate using these methods the coefficients for data on the productivity of industrial power plants in Iran (2006). Lastly, with the simulation example, we examine the performance of these estimators.
-
مباحث تشخیصی در رگرسیون لاسو
فریبا جان امیری 1396In linear regression analysis, the presence of collinearity among regressor variables may cause highly unstable least squares estimates of the regression parameters.When
prior information about coefficients are available, the application of this informations
into estimate will increase efficiency of resulting estimator and also decrease collinearity effects. A subset of the data can have a disproportionate influence on the different aspects models So, it is necessary to identify these kind of data. Among unusual observations in models one can refer to the outliers, leverage point and influential observation. Diffrrent measures including matrix prediction, standardized residuals, DFBETAS, DFFITSS, Cook’s distance and mean-shift have proposed, to detect these kind of observations. In this dissertation, we first study an approximate version of lasso estimate and some its propeties. Then we proposed a new estimator by applying mix procedure to approximate version of lasso estimate when stochastic restrictions are assumed. Then, we extend diagnostics methods under this estimators. As analogues to those given in OLSE estimators. Finally, a numerical example is given to illustrate some of the theoretical results.
-
مطالعهی برآورد کلاس r-d و برخی روشهای تشخیصی در مدلهای رگرسیونی تحت محدودیتهای خطی تصادفی
مریم عالی محمدی موردغفاری 1396In the presence of multicollinearity, the OLS estimate will be challenged. In fact
this estimator still unbiased but because of large variance and its MSE this estimator
will be far from its true value. In order to decreasing multicollinearity effects, biased
estimators such as r-d calss estimator and or r-d class estimator under stochastic linear
restrictions can be used. These estimators by accepting a little bit biase and decreasing
variance of regression coeficients, will produce stable coeficients. To compare these
biased estimator, MSE criterion will be used.
Sometime a small group of data have large effect on fitting a regression model, and
will influnce on some aspect of model, so these data must be identified. Detection such
observations by methodes and criterions base on sensibility analys is introduced. By
considering detection of influential and outliers observation as a goal, criterions such
as prediction matrix (Hat matrix), standard residuals, DFBETAS, DFFITS and mean
shift procedure are proposed.
In this disertation r-d class estimate and r-d class estimate under stochastic linear
restriction will be study, then some diagnostics for these estimates are generalized.
Finally by using a real data set the resulting conclusions are investigated.
-
مطالعه برآورد رگرسیون ریج دو پارامتری و برخی روشهای تشخیصی در مدل های رگرسیونی
بسعاد براجعه 1395The existence of collinearity in linear regression models and its effects on results of regression analysis has caused using other estimators instead of least squares estimates. When prior information about coefficients are available, the application of this information into estimate will increase efficiency of resulting estimator and also decrease collinearity effects. Identifying influential observation is an important part of the model building process in linear regression. Therefor numerous diagnostic measures based on different approaches in linear regression analysis are proposed. In this dissertation, we first study two parameter ridge estimate and some its properties. Then we proposed a new estimator by applying mix procedure to two parameter ridge estimate when stochastic restrictions are assumed. Thus by a simulation study we compare the performance of this new estimate with other estimators. Also we extend diagnostics methods under generalized two parameter ridge and mixed two parameter ridge estimators. A statistic for mean shift test is proposed, which its empirical distribution is obtained by application of bootstrap procedure in a simulation study.
-
اثرات حذف همزمان چند مشاهده و یک زیر مجموعه از متغیرهای مستقل بر رگرسیون کمترین توان های دوم وزنی
خدیجه عباس زاده 1394The homogeneity of the variances of errors is one of the assumptions of the classical linear regression model. If this assumption does not hold, generalized least squares method is used to estimute the parameters. On the other hand, some of the observations can have a significant effect on the parameter estimates and it is important to identify these observations. In this thesis we deal with the multiple linear regression models with the heteroscedasticity error variances and the weighted method has been used to fix the error variance. We study the effect of simultaneous deleting of an observation and an independent variable on the ordinary and weighted least square regression models and derive the influential Observations, Outliers and Leverage points with using deleting method in the ordinary and weighted least square regression models. Next we examine the effects of simultaneous deleting multiple observations and a subset of independent variables on the weighted least square regression models. Finally, an example of real data set is used to illustrate the proposed methods.
-
مطالعه ی برآوردگرها و برخی روش های تشخیصی در رگرسیون مؤلفه های اصلی تحت محدودیت های خطی تصادفی
شایسته دیلمی 1394In linear regression analysis, the presence of collinearity among regressor variables may cause highly unstable least squares estimates of the regression parameters. When faced with collinearity, we use the biased estimators such as, the principal components regression or the stochastic restricted principal components regression to combat collinearity. On the other hand, study of the diagnostics methods and identifing unusual observations is an important step in the process of model building. Sometimes, A subset of the data can have a disproportionate influence on the different aspects models So, it is necessary to identify these kind of data. Among unusual observations in models one can refer to the outliers, leverage point and influential observation. Diffrrent measures including matrix prediction, standardized residuals, DFBETAS, DFFITSS, Cook’s distance and mean-shift have proposed, to detect these kind of observations. In this dissertation, we first study the principal components regression and the stochastic restricted principal components regression estimators. Then, we extend diagnostics methods under this estimators. As analogues to those given in OLSE estimators. Finally, a numerical example is given to illustrate some of the theoretical results.
-
مطالعه برآوردها و برخی از مباحث تشخیصی در مدل های رگرسیون ریج با خطاهای ناهمسان
عالی-اسیه 1393Among themethodsused inregression, one can use the least squares method toestimate the parameters of the model. But sometimes we faced withcollinearityamongthe independent variables.Consequently, theresults of the least squares method will not be reliable.Many methods have been proposed to deal with this phenomenon by researchers. Among those one can refer to the ridgeregressionmethods, principal componentregressionandpartialleast squares. In this thesis theridgeregressionmethodis usedto deal withthis phenomenon. Thehomogeneity ofthe variancesof errors, is one of theassumptions ofthe classicallinear regressionmodel.If this assumption does not hold, generalized least square used to estimation parameters.In this thesis we deal with multiple linear regression models in which the disturbancesare heteroscedasticity and the explanatory variables are collinear.
On the other hand, someof the observations canhavea significant effect onthe parameter estimates and it is important toidentifytheseobservations.
Inthisthesis, westudyseemingly unrelatedregressionmodelto estimatetheridge, ridgeregression modelwithautocorrelatederrors, ridgeregression modelwithheteroscedasticity errors and to evaluate influential Observations, usingdeleting merthod. Then,weextendthisapproachtostudythe models and to find effectiveobservationonthesemodels. Finally, examples of real data set are used to illustrate the proposed methods.
-
مطالعه برآوردگر جک نایف لیو و برخی روش های تشخیصی در مدل های رگرسیونی
منتظری شاتوری-زهرا 1393In regression analysis, a small subset of the data sets can have a disproportionate influence on the estimate of parameters or predictions. Accordingly, detecting this kind of data is one of the important steps in regression analysis and model building process. The situation will be more complicated when there are influential observations in the presence of collinearity. In this case it is suggested that first reducing collinearity and then detecting anomalous data. On the other hand, collinearity can increase the variance of the least squares estimates regression coefficients and build unstable estimates. One can use the biased estimators to mitigate the effects of collinearity. The biased estimators decrease the variance of regression coefficients and building stabilized coefficients. An estimator with minimum mean square error is more efficient among several estimators. Reducing the bias can be one of the enhancement efficiency methods in biased estimator. In this thesis, we study the Jackknife Liu and Modify Jackknife Liu estimators. Then we generalize diagnostic methods for these estimates. Generalized diagnostics involve: DFFITS, DFBETAS, and COVRATIO, COOK distance and mean shift outliers. Finally, real data sets are used to illustrate the methodologies proposed.
-
تحلیل فاصله موالید در شهر اهواز از دیدگاه داده های پانلی
زهرا میلانی 1393The birth interval is one of the main criterion about reproduction subject. Although pairʼs decision is very important in this matter, but economic, cultural and public factors are also affective. In this thesis, panel data models have been considered. Panel data are combinations of time series and cross section data. In other words, information about cross section data have been noticed during a certain period of time. Therefore; these kind of data have two dimension. One of these dimension correspond to various units in every particular time section and the other dimension correspond to time subject and allow us to analysis topics which can not be considered as time series or cross section data. Panel data have many applications in econometrics and also they have more advantages then cross section or time series data. Morever; these data are more informative and variability and less collinearity among the variables. Also, these data have more degrees of freedom and efficiency. In this thesis uses balanced, unbalanced and dynamic panel models, the effective factors in birth intervals of womenʼs children attending to clinical-healthy centers in Ahwaz have been studied.
-
مطالعه ی برآورد ریج وبرخی مباحث تشخیصی در مدل های رگرسیونی تحت محدودیت های خطی تصادفی
نرگس هدایت پور 1392 -
مطالعه برآورد لیو و برخی مباحث تشخیصی در مدلهای رگرسیونی تحت محدودیت های تصادفی خطی
فروغ حاجی باقری فروشانی 1392 -
آنالیز حساسیت برآوردگرها نسبت به پارامتر همبستگی فضایی در مدل اتورگرسیو فضایی
فرشید علی زاده 1391 -
آشکارسازی نقاط پرت به روش بیزی در مدل قیمت گذاری دارایی سرمایه ای
الهام رستمی 1391 -
دگرگونی ساختاری در مدل های رگرسیون چندکی
هدی محمدی 1391 -
برآورد متوسط واریانس تکه ای و کاربرد آن در تحلیل میزان بهره وری کارگاه های صنعتی برق در ایران(سال 1385)
قاسم امینی 1390 -
رگرسیون وارون قطعه ای و کاربرد آن در تحلیل فواصل تولد در شهر اهواز
زهره سعیدی 1390 -
: تأثیر مشاهدات بر آماره های آزمون با تمرکز روی مدل های رگرسیون خطی
فاطمه قنداق ساز 1390 -
اعتبارسنجی کلی فرض های مدل خطی
محمدرضا مهاجرنیا 1389 -
روش ماکسیمم آنتروپی تعمیم یافته و کاربرد آن در برآورد تابع تولید محصولات مشخص کشاورزی
مریم اسكندرزاده 1389 -
تاثیر موضعی و ماتریس تاثیر استاندارد شده در رگرسیون توانهای دوم جزیی
منیر گودرزی 1389 -
برآوردگر ماکسیمم آنتروپی تعمیم یافته در مدلهای خطی
مهدی عظیمی 1386 -
برآورد ناپارامترهای تابع رگرسیونی در مدلهای با خطای اندازهگیری به روش SIMEX
مهرداد نوروزی فیروز 1385 -
آنالیز تاثیر در مدلهای رگرسیونی کمترین توانهای دوم جزئی
فاطمه مزارعی 1385 -
کاربرد باقیمانده بازگشتی در ارزیابی برخی از انحرافات مدلهای رگرسیونی معمولی و باخطا در اندازهگیری
بهاره فیضی 1384 -
مطالعه تأثیر موضعی در مدلهای رگرسیون ریج و مدلهای خطی با خطا در اندازهگیری ریج
مینا كشاورز 1383 -
بررسی ورشکستگی صنایع غیردولتی شهر اهواز به کمک الگوی آماری نرخ شکست رقیب
لیلا دلگرم 1382 -
فرایندهای تجربی بر اساس باقیماندههای بازگشتی در مدلهای خطی با خطا در اندازهگیری و کاربرد آنها در آزمونهای نیکویی برازش از جهت توزیع نرمال
فاطمه قپانی 1382 -
مطالعه فاصله از موالید و عوامل موثر بر آن در شهر اهواز
حسین حاجیزاده 1381 -
مطالعه اثرات طرح توسعه نیشکر و صنایع جانبی بر تمایل به مهاجرت کارکنان شاغل در طرح از استان خوزستان
مجید رجبی 1380 -
بررسی اثرات اشتغالزایی طرح توسعه نیشکر صنایع جانبی با استفاده از تحلیل رستهای
علی ظاهرزاده 1379 -
توابع موثر در مدلهای خطی ریج با خطا در اندازهگیری
ارزو باقری 1379 -
مطالعه آماری نرخ باروری و عوامل موثر بر آن در شهر اهواز با استفاده از مدلهای لجستیک
امراله جعفری 1377 -
تحلیل داده های بقا در حضور متغیرهای کمکی اندازه گیری شده با خطا
رویا چرم زاده 1367Survival analysis is the perhaps used to describe analysis of the data in the from times from a well defined time origin untile the occurrence of some particular event or end points. One of the main goals in the analysis of survival data, is to find a relationship between the dependent variable and independent variables. For to achieve this goal using the regressions accelerated failure time model. In the regression models one of the basic assumptions is that the independent variables are fixed and known. But covariate measurement error is often present in survival data for various reasons. When the main objective of the model is relationships between dependent and independent variables and examine the relationship between them, attention to measurement error is a serious problem. Since ignoring measurement error may result in substantially biased estimates in many context including linear and nonlinear regression.
Using of this method for modeling birth intervals in Ahvaz is an issue that has been considered in this study. The data source for this study is the birth intervals woman referred to health centers in Ahvaz. Since there are some factors that seems may be difficult to observe precisely, using the simulation extrapolation method seems to be appropriate. The results shown that estimates for birth intervals models in two methods Naïve that ignoring measurement error and simulation extrapolation method are different.